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LETTER TO THE EDITOR 
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Abstract. The spatial coherence properties of quasi-stationary gaussian optical 
fields are discussed using a terminology that shows the importance of coherence 
functions of order N # M .  It is shown that this field is spatially less coherent than 
a thermal field. 

Generalizations of gaussian optical fields have been considered by Picinbono 
and Rousseau (1970). The class of 'quasi-stationary gaussian' optical fields has been 
introduced and it has been shown that it is more chaotic (or incoherent) than the 
stationary gaussian (thermal) field (Picinbono 1969). It has also been pointed out 
that this new class is physically obtainable and in fact it appears in some experimental 
situations. In this communication, we investigate some of the spatial properties of 
the quasi-stationary gaussian fields. We show that this class is spatially (as well as 
temporally) more chaotic than the thermal field. We also reformulate the Picinbono- 
Rousseau results i n  a form that shows the importance of coherence functions of odd 
orders hi # M (Mandel and Wolf 1965). 

We start be reviewing some definitions pertinent to the present development. 
Stationary jield. An optical field represented by its analytic signal V(x)  at the 

space-time point x = ( r , t )  is said to be stationary of order ( N , M )  if the coherence 
function (Mandel and Wolf 1965) 

GN*"(xl~ x,, $3, - , x ~ + n f )  = (V*(x , )  V*(x,) . V*($N) V ( ~ N + , )  - * V(XN+,)) ,  

is independent of shifts in the time origin. If the field is band-limited with bandwidth 
h w  and a central frequency wo then (Mandel and Mehta 1969) 

This condition is always satisfied for N # M ,  unless M and N are very large numbers. 
In particular, Go*' = G2v0 = 0. 

Complex circular gaussian jield. An optical field represented by its analytic signal 
V(x) is said to be gaussian if V(x) is a complex gaussian stochastic process, ie, whose 
real and imaginary parts are jointly gaussian. Such processes are characterized by 
an expansion which in the order (2,2) takes the form 

G2%, 3 xz ; $3 , $4) 

= G1*'(x,; %3)G1*'(~2; x,)+ G1sl($l; x,)G'''(x,; ~ 3 )  

+ GZo0(X,, xZ) G002(~, , x,), (2) 
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where V(x)  is assumed to have zero mean. This optical field is said to be complex 
circular gaussian (or thermal) if, moreover, it is stationary. In this case, (1) applies 
and the expansion (2)  becomes the well known formula (Reed 1962) 

Gzs2(X,, Xz ; $3,  Xq) 

= GIJ(xl; x3)G1J(x2; x,) + C'1J(x1; x4)G1J(x2; x3). (3) 
We emphasize that stationarity of the field is a necessary condition for the validity 
of the often used expansion (3). 

Quasi-stationary gaussian j ield. An optical field whose analytic signal is written 
in the form V(x)  = A(x) exp(-jw,t) is said to be quasi-stationary gaussian ( Q S G )  
if its amplitude A(x)  is a stationary band-limited complex gaussiaii process. This 
field has the following properties : 

(i) It is stationary for orders N = M ,  but nonstationary for orders N # M .  
(ii) Its coherence functions of order N # M do not vanish as in  the stationary 

case. Actually the values of these functions can be taken as a measure of the degree 
of nonstationarity. 

(iii) The expansion (2 )  is valid but that of (3) is not. 
(iv) The necessary and sufficient condition for this field to become fully stationary 

is that GNsM = 0 V N # M .  In such a case the expansion (2) becomes that of a com- 
plex circular gaussian field (3). 

Intensity correlation properties of QSC fields. 

The second order intensity coherence function at two points in space r1 and r ,  and 
time delay t2 - tl = T, 

GI(rl, r,; T )  = G2n2 (x1, $2; x1, $2) 

has great importance in the fields of astronomy (Hanbury Brown 1968), and intensity 
fluctuation spectroscopy (Pike and Jakeman 1973). For a quasi-stationary optical 
field we can use the expansion (2) and write 

G z ( r l ,  1,; 7) = Z(rl)Z(rz)+ lG1 , l ( r l ,  U , ;  7)12+ ! G 0 - 2 ( r l ,  r,; .)I2. (4) 
where I ( r )  = G1vl(x, x) is the field's intensity. We note that when the field is stationary, 
Go*' = 0 and we recover the celebrated expansion of a complex circular gaussian 
process 

Also if the field has a real amplitude, then /Go,21 = lG1sl/ and equation (4) becomes 
G z ( r l ,  r 2 ; 4  = I(r l )Z(rz)+ [G1s l (r l ,  rz;T)12. 

G I ( r l ,  r , ;  T )  = ~ ( r l ) Z ( r z ) + 2 1 G 1 , 1 ( r l ,  r,; T ) ] ' .  

( 5 )  

(6) 
Picinbono and Rousseau (1970) have obtained an expansion equivalent to  (4) (equation 
(5.2) of their paper). However, this expansion is given in terms of elements of the 
correlation matrix describing the correlations of the real and imaginary parts of the 
field amplitude. The present description in terms of coherence functions of odd orders 
seems to be more straightforward (for example, the condition Go*, = 0 is equivalent 
to equations (2.8) and (2.9) of their paper). Also, the generalization of (2), would 
enable us to  directly find an expansion for amplitude coherence functions of any order 
(most important of which is the order 2,2 which is often necessary in intensity cor- 
relation experiments). Now in order to compare between the degree of spatial in- 
tensity correlation of both the QSG field and the thermal field, we use a criterion 
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analogous to that of Picinbono (1969), 

GI(rl = r2 = r; 0) 
h =  

G1(r1-r2 = c0;0)' (7) 

By using (4) and noting that for rl and rz sufficiently separated, lGIJl = )G2*01 = 0, 
it follows that 

where 
h = 2 + e ,  

O < E =  

2 G h G 3 .  

IG2so(r, r ;  0)12 
I G ~ J ( ~ ,  r;o>lZ ' ' 3  

hence 

Note that for a fully stationary field (thermal) E = 0 and h = 2 and for a quasi- 
stationary field with real amplitude E = 1 and h = 3 ,  indicating that the QSG field is 
spatially more chaotic than the thermal field. This is a result analogous to the temporal 
property previously reported by Picinbono and Rousseau (1970). 

Concluding, we give two examples of QSG fields. 
(i) Mixture of coherent and thermal light. Consider a thermal light field 

Vi(%) = A,(%) exp( -jwot), mixed with a coherent plane wave of the same central fre- 
quency V&) = A,  exp( -juot). The mixed light V(x) = (AI(%) +A,) exp( -jw,t)is quasi- 
stationary guassian (because its amplitude is gaussian, stationary and band-limited). 
In this case, Go*,( x,, 8,) = A,, exp[ -jwo(rl +?,)I # 0. Yet it should not be concluded 
that this field is less coherent than a thermal field. This field has an amplitude with 
nonzero mean and hence the expansion (2)  has to be modified. If this is done we 
reproduce the expansion already known in studies of heterodyne detection of gaussian 
light (Pike and Jakeman 1973) and get, 1 < h = 2-Ic/(Ii+I,,) < 2, where Ii and 
I, are the intensities of the incoherent and coherent parts of the field. 

(ii) Light scattered from fluids. The light scattered from susceptibility fluctuations 
of a fluid target illuminated by an ideal laser is approximately represented by (Cummins 
and Swinney 1969) 

V( k ,  t )  N 1 AX( r , t )  exp ti( k - ko) . rl d3 r exp( - j wo t )  , 
0 

where AX(r,t) represents the susceptibility fluctuation, assumed stationary, homo- 
geneous and gaussian, and ko and & are wavevectors in the directions of the incident 
plane wave and the observation point respectively. This field is obviously quasi- 
stationary gaussian. In order to check the conditions under which the field is fully 
stationary (and therefore thermal) we calculate 

G2,0( kl, k,; T = 0) = S. S, GAx(r-r')expU(kl- k0).r+j(k2- k,).r'ld3rd3r' 

where GAx(r-rr) = (AX(r,t)Ax(r',t)). Assuming that the target size o1I3 is much 
longer than the width of GAx(r) and changing the variables of integration we can write 

3* 
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where 

so( k) = exp(j k . r )  d3 r s, 
is a function determined by the target dimensions which decreases rapidly as k 
increases. This determines a solid angle for the observation vector $(k, +kz) centred 
around the forward scattering direction ko, outside which 9, = 0, G2mo = 0 and 
hence the field is fully stationary. If the fluctuations correlation length is comparable 
to the target dimensions (a situation of recent interest) then the problem is not as 
simple, and quasi-stationarity may extend to wider scattering angles. 
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